Abstract

This paper considers the control of the concentration of a reactant on the reactive surface of an electrode in an electrochemical system, where the reactant mass transfer to the electrode is limited by diffusion. The aim is to maximize the reaction rate at the surface still avoiding total depletion of the reactant at the electrode. It is shown that this boundary control problem of the said physically distributed system can be solved relatively simply by using a modified linear quadratic Gaussian regulator. First the finite diffusion process with mixed boundary conditions is solved analytically and approximated with a discrete-time system which is formulated as a function of the current control action and the cumulative past controls actions. Several simulations accompany the discussion and a stochastic approach is utilized, which enables the controls to compensate for model inadequacies and measurement inaccuracy and thereby makes the presented approach better applicable in practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.