Abstract

Voltage source converter (VSC)-based high-voltage direct current (HVDC) transmission systems have attractive advantages compared to classical thyristor-based HVDC transmission systems. However, VSC-based HVDC transmission systems are vulnerable to dc side fault, and expensive dc circuit breakers are required to protect them against dc fault. This paper proposes a control method of a dc fault-resilient VSC which can be protected against dc fault without using expensive dc circuit breakers. In the VSC configuration, several H-bridge modules are connected in cascade, so the voltage balancing control of several floating dc capacitors is required. In this paper, an appropriate control structure with the capacitor voltage balancing controller is proposed. The appropriate control algorithm for dc fault operation and recovery after dc fault is also proposed. PSCAD simulation results are presented to validate the proposed control structure under normal and dc fault operating conditions. Real-time-digital-simulator results are also presented to verify the control structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call