Abstract
Shrinkage cracking can be a critical problem in concrete construction, especially for flat structures such as highway pavements, slabs for parking garages, and bridge decks. One way to reduce the shrinkage cracking is to provide reinforcement in the form of wire mesh to resist tensile forces. In recent years, short, randomly distributed fibers have been used to control shrinkage cracking. The efficiency of shrinkage-reducing admixtures (SRAs) in controlling restrained shrinkage cracking of concrete is reviewed. A ring-type specimen was used for restrained shrinkage cracking tests. The SRA selected for this investigation was a propylene glycol derivative, which was used at 1 and 2 percent by weight of cement. Free (unrestrained) shrinkage, weight loss, compressive strength, and fracture toughness were also investigated. The results of SRA concretes were compared with that of plain concrete with the same water-to-cement ratio. A theoretical model based on nonlinear fracture mechanics was developed for predicting transverse cracking of the concrete ring specimen caused by drying shrinkage. The model prediction of time to cracking compared well with the experimental data. The model can be extended to different geometries and dimensions than those considered in this research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.