Abstract

AbstractWe located “hidden” S‐character chirality in formally achiral glycine using a vector‐based interpretation of the total electronic charge density distribution. We induced the formation of stereoisomers in glycine by the application of an electric field. Control of chirality was indicated from the proportionate response to a non‐structurally distorting electric field. The bond‐flexing was determined to be a measure of bond strain, which could be a factor of three lower or higher, depending on the direction of the electric field, than in the absence of the electric field. The bond‐anharmonicity was found to be approximately independent of the electric field. We also compared the formally achiral glycine with the chiral molecules alanine and lactic acid, quantifying the preferences for the S and R stereoisomers. The proportional response of the chiral discrimination to the magnitude and direction of the applied electric field indicated use of the chirality discrimination as a molecular similarity measure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.