Abstract

In this study, some techniques for the control of chaotic nonlinear systems with periodic coefficients are presented. First, chaos is eliminated from a given range of the system parameters by driving the system to a desired periodic orbit or to a fixed point using a full-state feedback. One has to deal with the same mathematical problem in the event when an autonomous system exhibiting chaos is desired to be driven to a periodic orbit. This is achieved by employing either a linear or a nonlinear control technique. In the linear method, a linear full-state feedback controller is designed by symbolic computation. The nonlinear technique is based on the idea of feedback linearization. A set of coordinate transformation is introduced, which leads to an equivalent linear system that can be controlled by known methods. Our second idea is to delay the onset of chaos beyond a given parameter range by a purely nonlinear control strategy that employs local bifurcation analysis of time-periodic systems. In this method, nonlinear properties of post-bifurcation dynamics, such as stability or rate of growth of a limit set, are modified by a nonlinear state feedback control. The control strategies are illustrated through examples. All methods are general in the sense that they can be applied to systems with no restrictions on the size of the periodic terms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.