Abstract

In this paper, we introduce a distributed control strategy to prevent dynamically-induced cascading failures in power grids. We model power grids using complex networks and nonlinear dynamics to provide a coarse-grained description of the electro-mechanical phenomena taking place on them (in particular, we use coupled swing equations) and restrict our analysis to cascades of line failures, i.e., failures due to power flows exceeding the maximum capacity of a line. We formulate a distributed control protocol relying on the same topology of the physical layer and apply it to several power grid models, including a small-size illustrative example with five nodes, the Italian high-voltage (380kV) power grid, and the IEEE 118-bus system. Our results indicate that the approach is capable of preventing cascading failures, either controlling each node of the network or a suitable subset of them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.