Abstract

After molecular beam epitaxy GaAs is grown at 585 °C, substantial diffusion of Be occurs during growth of subsequent layers or during subsequent in situ annealing at 700 °C. By using an order of magnitude larger As4 flux than commonly used during growth and annealing, we were able to lower the Be diffusion coefficient by an order of magnitude. We also show that the Be diffusion coefficient is strongly dependent on the Be concentration. Different specimens were prepared with varying Be doping density, As4:Ga beam flux ratio, and annealing temperature. In these experiments, the Be concentration profiles were measured by secondary ion mass spectrometry and from them Be diffusion coefficients were calculated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.