Abstract

To achieve high-performance control, the dynamics and control should be closely integrated. This paper focuses on dynamic-based control design for a hybrid painting robot containing parallelogram linkages to improve its tracking accuracy and motion consistency. The study derives the dynamics of the parallelogram component to investigate its distinctive attributes, which include time invariance, joint independence, and linear approximability. Based on these unique characteristics, a novel theory-experiment mixed two-step method for control design is presented. It involves identifying and visualizing an optimized space of control parameters through theoretical deduction, followed by determining the optimal control parameters within this space through experimental trials. Experimental results underscore a substantial improvement in the tracking accuracy and motion consistency of the painting robot.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.