Abstract
Robots, such as industrial robots, have been used in the world of industry since the 1970s. There has been particularly rapid development in the field of robots in recent years, and there has been progress in robot research in industries such as communications and automobiles. For this reason, in the near future, robots with a diverse range of applications will be required around us. In this paper, as part of foundational research on robots and artificial intelligence, we propose a method for learning ball trajectories, using machine learning, to estimate target values for the distance in which robots move. In the proposed method, we use a linear regression model for supervised learning, and validate its effectiveness through experimentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Robotics, Networking and Artificial Life
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.