Abstract

In this paper, an average switch model approach to the power stage modeling, feedback compensation network design, and dynamic analysis of power factor correction (PFC) boost converters with ripple steering is presented. The model is expressed by the derivation of power stage transfer functions for a conventional boost converter and then followed by the derivation of the power stage transfer functions for a boost converter with ripple steering. A detailed design procedure and comparison of both voltage and current feedback loops are given in a conventional PFC boost converter and boost converter with ripple steering. Experimental and simulation results of a prototype boost converter converting universal ac input voltage to 400 V dc at 1.6 kW are given to verify the proof of concept and analytical work reported. The experimental results demonstrate that the model can correctly predict the steady-state behavior of a continuous conduction mode PFC boost converter with ripple steering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call