Abstract

In this paper, the authors present the synthesis of control laws for the flexible joint manipulator to stabilize the oscillation and track the desired trajectory. To solve this problem, the article applies synergetic control theory. In synergetic control theory the desired values are impressed as invariants. So the invariants act as the control objectives of the system and our task is to find the control laws for them. Using this theory, the control law is designed to ensure the movement of the closed-loop system from an arbitrary initial state into the vicinity of the desired invariant manifold, i.e. the objective attracting manifold. Thereby, not only reach the necessary invariant but also ensure the asymptotic stability of the entire system. The quality of the proposed control law is shown through simulation results on Matlab and its efficiency is shown by comparison with backsteping control law.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.