Abstract

The present work deals with the development of a numerical model to analyze the effect of control force on a single rigid massive cylindrical particle’s lateral migration in a straight channel. The finite volume immersed boundary method (feedback forcing-based), along with semi-implicit strategy, is incorporated to create a computational model. The control force is applied in the direction against the fluid flow, to control the equilibrium position and drive it to the channel center. The effect of the Reynolds number, particle diameter and density ratio on the control force is studied. From parametric studies, a prediction model is developed for the control force with the Reynolds number, particle diameter and density ratio as inputs. The linear regression methodology in machine learning is utilized to create the prediction model. The predicted values of control force are observed to match those of the simulation results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call