Abstract
We address the study of controllability of a closed quantum system whose dynamical Lie algebra is generated by adjacency matrices of graphs. We characterize a large family of graphs that renders a system controllable. The key property is a novel graph-theoretic feature consisting of a particularly disordered cycle structure. Disregarding efficiency of control functions, but choosing subfamilies of sparse graphs, the results translate into continuous-time quantum walks for universal computation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.