Abstract

With the everyday technological growing and updates of the Internet of Things (IoT), smart microgrids, as the building foundations of the future smart grid, are integrating more and more different IoT architectures and technologies for applications intended to develop, control, monitor and protect microgrids. A smart microgrid consists of a smaller grid that can function independently or in conjunction with the main power grid and it is suitable for institutional, commercial and industrial consumers and also for urban and rural communities. A microgrid can operate in two modes, stand-alone mode and grid-connected mode, with the possibility to switch between modes because of faults in the local grid, scheduled maintenance and upgrade, shortages and outages in the host grid or for other reasons. With various distributed energy resources (DER) and interconnected loads in the microgrid, IoT is intended to provide solutions for high energy management, security mechanisms and control methods and applications. The basic components of a microgrid refer to local generation, consumption, energy storage and point of coupling to the main power grid. Local generation consists of different energy resources that provide electricity to users, from single residential house to commercial and industrial centers, which represent consumption. Energy storage is where the power is stored and comes with multiple functions such as voltage and frequency regulation, power backup or cost optimization. A coupling point refers to the junction between a smaller smart microgrid and the main smart grid. The main purposes of this chapter are to show the role of Internet of Things in creating and developing smart microgrids including benefits, challenges and risks and to reveal a variety of mechanisms, methods and procedures built to control and protect smart microgrids. Different technologies, architectures and applications using IoT, as the main key features, with the major goal of protecting and controlling innovative smart microgrids in line with modern optimization features and policies are intended to upgrade and improve efficiency, resiliency and economics. Microgrids represent a large IoT opportunity because they are composed of equipment that demands sensing, connectivity and analytics technologies to operate at the highest level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.