Abstract
Middle wave infrared (MWIR) HgCdTe p-on-n double-layer heterojunctions (DLHJs) for infrared detector applications have been grown on 100-mm Si (112) substrates by molecular beam epitaxy (MBE) for large format 2,560×512 focal plane arrays (FPAs). In order to meet the performance requirements needed for these FPAs, cutoff and doping uniformity across the 100-mm wafer are crucial. Reflection high-energy electron diffraction (RHEED), secondary ion mass spectrometry (SIMS), Fourier transform infrared spectrometry (FTIR), x-ray, and etch pit density (EPD) were monitored to assess the reproducibility, uniformity, and quality of detector material grown. Material properties demonstrated include x-ray full width half maximum (FWHM) as low as 64 arc-sec, typical etch pit densities in mid-106 cm−2, cutoff uniformity below 5% across the full wafer, and typical density of macrodefects <1000 cm−2. The detector quality was established by using test structure arrays (TSAs), which include miniarray diodes with the similar pitch as the detector array for easy measurement of critical parameters such as diode I-V characteristics and detector quantum efficiency. Typical I-V curves show excellent R0A products and strong reverse breakdown characteristics. Detector quantum efficiency was measured to be in the 60–70% range without an antireflection coating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.