Abstract

Developing spinal motor networks produce a diverse array of outputs, including episodic and continuous patterns of rhythmic activity. Variation in excitability state and neuromodulatory tone can facilitate transitions between episodic and continuous rhythms; however, the intrinsic mechanisms that govern these rhythms and their transitions are poorly understood. Here, we tested the capacity of a single central pattern generator (CPG) circuit with tunable properties to generate multiple outputs. To address this, we deployed a computational model composed of an inhibitory half-center oscillator (HCO). Following predictions of our computational model, we tested the contributions of key properties to the generation of an episodic rhythm produced by isolated spinal cords of the newborn mouse. The model recapitulates the diverse state-dependent rhythms evoked by dopamine. In the model, episodic bursting depended predominantly on the endogenous oscillatory properties of neurons, with Na+/K+ ATPase pump (IPump) and hyperpolarization-activated currents (Ih) playing key roles. Modulation of either IPump or Ih produced transitions between episodic and continuous rhythms and silence. As maximal activity of IPump decreased, the interepisode interval and period increased along with a reduction in episode duration. Decreasing maximal conductance of Ih decreased episode duration and increased interepisode interval. Pharmacological manipulations of Ih with ivabradine, and IPump with ouabain or monensin in isolated spinal cords produced findings consistent with the model. Our modeling and experimental results highlight key roles of Ih and IPump in producing episodic rhythms and provide insight into mechanisms that permit a single CPG to produce multiple patterns of rhythmicity.

Highlights

  • Locomotor behaviors enable organisms to navigate and interact with their environment

  • We developed a computational model consisting of two neurons representing mutually inhibiting neuronal populations, an half-center oscillator (HCO) (Figure 1)

  • We suggest that the dynamics of episodic bursting in the neonatal mouse locomotor central pattern generator (CPG) are dependent on Ih, inactivating persistent Na+ current (INaP), and IPump

Read more

Summary

Introduction

Locomotor behaviors enable organisms to navigate and interact with their environment. Locomotor behavior during foraging is often episodic, interspersed with pauses to survey the environment. Pauses are less favorable during migratory locomotor behaviors, which are generally continuous to maximize distance traveled. Animals need the capacity to rapidly switch between locomotor behaviors. The neural mechanisms that govern the generation of episodic and continuous locomotor bursts and transitions between them are unclear, but studies in fish and Xenopus tadpoles provide evidence that an interaction between descending commands, sensory modulation, and endocannabinoids contribute (Eaton et al, 2001; Sillar and Robertson, 2009; Berg et al, 2018)

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call