Abstract

ABSTRACTReacted films on compound semiconductor substrates present challenging materials characterization problems which often require the application of transmission electron microscopy (TEM) techniques. In this paper, both the problem - solving potential of the TEM techniques and the limits imposed by preparation of thin film/compound semiconductor TEM specimens are discussed. Studies of the Ni/GaAs, CuCl(aq)/CdS and Pd/GaAs reactions exemplify the role of TEM in identifying and determining the spatial distribution of interface - stabilized polymorphs and new ternary phases (e.g. tetragonal Cu2S, Ni3GaAs and PdxGaAs). These examples also serve to clarify the relationship between TEM and complementary analysis techniques such as Rutherford backscattering spectrometry, Auger electron spectroscopy and glancing-angle x-ray diffraction. In particular, it is argued that a combination of (1) high-spatial-resolution information obtained by TEM and (2) an indication of the “average” behavior provided by data from a complementary characterization technique provide the minimum quality and quantity of data necessary to understand most reactions on compound semiconductor substrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call