Abstract
BackgroundThe present study was carried out to determine whether the p53 pathway played a role in the spontaneous immortalization of the SC-2 chicken embryo fibroblast (CEF) cell line that has been in continuous culture for over three years.ResultsThe SC-2 cell line emerged from an extended crisis period with a considerably slower growth rate than primary CEF cells. The phenotype of the SC-2 cells changed dramatically at about passage 80, appearing smaller than at earlier passages (e.g., passage 43) and possessing a small, compact morphology. This morphological change coincided with an increase in growth rate. Passage 43 SC-2 cells expressed undetectable levels of p53 mRNA, but by passage 95, the levels were elevated compared to primary passage 6 CEF cells and similar to levels in senescent CEF cells. However, the high level of p53 mRNA detected in passage 95 SC-2 cells did not correlate to functional protein activity. The expression levels of the p53-regulated p21WAF1 gene were significantly decreased in all SC-2 passages that were analyzed. Examination of the Rb pathway revealed that E2F-1 and p15INK4b expression fluctuated with increasing passages, with levels higher in passage 95 SC-2 cells compared to primary passage 6 CEF cells.ConclusionThe present study suggests that altered expression of genes involved in the p53 and Rb pathways, specifically, p53 and p21WAF1, may have contributed to the immortalization of the SC-2 CEF cell line.
Highlights
The present study was carried out to determine whether the p53 pathway played a role in the spontaneous immortalization of the SC-2 chicken embryo fibroblast (CEF) cell line that has been in continuous culture for over three years
An examination of this type has been performed for another spontaneously immortalized cell line (SC-1) [9], but the expression of most cell cycle regulatory genes were very different compared to the SC-2 cells
The SC-2 cell line was derived from primary CEF cells that were thawed at passage 4
Summary
The present study was carried out to determine whether the p53 pathway played a role in the spontaneous immortalization of the SC-2 chicken embryo fibroblast (CEF) cell line that has been in continuous culture for over three years. Most cells are unable to overcome senescence to continue dividing unless key tumor suppressor pathways are first altered. The MDM2 and p53 proteins operate in a feedback loop whereby MDM2 degrades p53 while p53 activates transcription of MDM2, thereby helping to maintain low p53 levels in normal cells [14]. Another important gene involved in the p53 pathway is ARF, which binds directly to MDM2, protecting p53 from degradation and allowing for the increased expression of p53 [15,16]. Consistent with this, the levels of p21WAF1 have been reported to be elevated in senescent cells [23]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have