Abstract

Abstract As an essential source of freshwater river flow comprises ~80% of the water consumed in China. Per capita water resources in China are only a quarter of the global average, and its economy is demanding in water resources; this creates an urgent need to quantify the factors that contribute to changes in river flow. Here, we used an offline process-based land surface model (ORCHIDEE) at high spatial resolution (0.1° × 0.1°) to simulate the contributions of climate change, rising atmospheric CO2 concentration, and land-use change to the change in natural river flow for 10 Chinese basins from 1979 to 2015. We found that climate change, especially an increase in precipitation, was responsible for more than 90% of the changes in natural river flow, while the direct effect of rising CO2 concentration and land-use change contributes at most 6.3%. Nevertheless, rising CO2 concentration and land-use change cannot be neglected in most basins as these two factors significantly change transpiration. From 2003 to 2015, the increase in water consumption offset more than 30% of the increase in natural river flow in northern China, especially in the Yellow River basin (~140%), but it had little effect on observed river flow in southern China. Although the uncertainties of rainfall data and the statistical water consumption data could propagate the uncertainties in simulated river flow, this study could be helpful for water planning and management in China under the context of global warming.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call