Abstract

AbstractThe surface temperature‐mediated change in cloud properties, referred to as the cloud feedback, continues to dominate the uncertainty in climate projections. A larger number of contemporary global climate models (GCMs) project a higher degree of warming than the previous generation of GCMs. This greater projected warming has been attributed to a less negative cloud feedback in the Southern Ocean. Here, we apply a novel “double decomposition method” that employs the “cloud radiative kernel” and “cloud regime” concepts, to two data sets of satellite observations to decompose the interannual cloud feedback into contributions arising from changes within and shifts between cloud morphologies. Our results show that contributions from the latter to the cloud feedback are large for certain regimes. We then focus on interpreting how both changes within and between cloud morphologies impact the shortwave cloud optical depth feedback over the Southern Ocean in light of additional observations. Results from the former cloud morphological changes reveal the importance of the wind response to warming increases low‐ and mid‐level cloud optical thickness in the same region. Results from the latter cloud morphological changes reveal that a general shift from thick storm‐track clouds to thinner oceanic low‐level clouds contributes to a positive feedback over the Southern Ocean that is offset by shifts from thinner broken clouds to thicker mid‐ and low‐level clouds. Our novel analysis can be applied to evaluate GCMs and potentially diagnose shortcomings pertaining to their physical parameterizations of particular cloud morphologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.