Abstract

Previous reports on 'blindsight' have shown that some patients with lesions of the primary visual cortex (V1) could localize visual targets in their scotoma with hand and/or eye movements without visual awareness. A role of the retino-tectal pathway on residual vision has been proposed but the direct evidence for this still remains sparse. To examine this possibility, we inactivated the superior colliculus (SC) of unilateral V1-lesioned monkeys using microinjections of muscimol, and analysed the effects on visually guided saccades. Following muscimol injections into the contralesional SC, the monkeys performed the visually guided saccade task with relatively minor deficits. The effects of ipsilesional SC inactivation were more severe. After injections, the monkeys failed to localize the target within the visual field represented at the injection site on the SC map. The effects of ipsilesional SC inactivation may result from sensory deficits, motor deficits or a combination of both. To examine these possibilities, we tested the effects of SC inactivation on the motor system by investigating spontaneous saccades. After inactivation of the ipsilesional SC, spontaneous saccades toward the injection site were not abolished, suggesting that impairment of visually guided saccades following inactivation of the ipsilesional SC could not be explained solely by a motor deficit and was primarily due to a visual deficit, presumably by interfering with processing in the superficial layer. We conclude that the retino-tectal pathway plays an essential role in residual vision after V1 lesion. The results suggest that this pathway may be involved in mediating unconscious vision in blindsight patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call