Abstract

This study combines nanoindentation experiments, electron backscatter diffraction (EBSD) and atomic force microscopy (AFM) topographic measurements to investigate the material anisotropy contribution to the indentation behaviour of individual grains of various hexagonal-close packed (HCP) polycrystals with different axial ratio (zinc, magnesium and titanium). The grain size was much larger than the indents size to ensure quasi-single-crystal indentation and when, combined with an EBSD mapping, a wide variety of crystal orientations can be probed, which provides mechanical characterization of materials at the micro/nanoscale. Experimental curves can be used to determine the mechanical properties of the indented material. Furthermore, by using data issued from AFM topographic measurements, one can analyze the dislocations arrangements below and around the indentation print, and thus characterize the most probably activated deformation systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.