Abstract

Background: Single-nucleotide polymorphism in the gene, transcription factor 7-like 2 (TCF7L2), shows the strongest and most consistent association with risk of developing type 2 diabetes (T2D). TCF7L2 has been associated with both impaired beta-cell function and insulin resistance. Gene variants of TCF7L2 may, therefore, contribute to cardiometabolic risk (CMR) and metabolic syndrome (MS). Aims and Objectives: The study aims to examine the relationship between gene variants in TCF7L2 with MS and CMR. Methods: Three hundred and fifty-six adult Nigerians aged between 40 and 100 years participated in a cross-sectional, analytical study. The association between TCF7L2 genotypes and MS and its components was determined. The data were analyzed, and statistical significance was set at P Results: Three hundred and fifty-six individuals participated in the study (35.6% of males and 64.2% of females). About 64.9% of participants had T2D. The prevalence of MS was 26.4%. Among the individuals with the wild-type homozygote genotype CC, heterozygote genotype CT, and homozygote mutant TT, 24.9%, 27.2%, and 30.6% had MS, respectively. The risk T allele was associated with higher mean values of waist circumference and triglyceride than the C allele (P = 0.006 and 0.022, respectively). The T allele had a significant correlation with MS components (P Conclusion: Variants in the TCF7L2 gene are associated with components of MS and correlate with CMR through insulin resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.