Abstract

BackgroundHumans support their bodies exclusively by vertical balance in bipedal locomotion, and the body, especially the lower extremity, generally changes with age. Sex and body constitution are assumed to be associated with lower extremity alignment, but this association remains to be elucidated. This study sought to clarify this association in healthy, elderly, non-obese humans in a Japanese population.MethodsThe present study investigated 55 healthy volunteers (mean age: 70 ± 6 years). A 3D extremity alignment system was applied under weight-bearing conditions on biplane long lower extremities X-rays using a 3D-to-2D image registration technique. The evaluation parameters included 3D hip-knee-ankle angle (3DHKA) alignment in the coronal (coronal alignment) and sagittal planes (sagittal alignment) and rotational alignment between the femur and tibia. The influences of sex and body constitution on all the alignment were analyzed.ResultsMultiple linear regression analysis with the dependent variable of each alignment showed that sex was the dominant factor for coronal and rotational alignment (coronal: p < 0.01; rotational: p < 0.01), and body weight was the dominant factor for sagittal alignment (p < 0.01).ConclusionsThe association of sex with coronal and rotational alignment and of body constitution with sagittal alignment were proved in healthy, elderly, non-obese humans in a Japanese population. This finding can lead to further understanding of the etiology of many diseases and age-related changes.

Highlights

  • Humans support their bodies exclusively by vertical balance in bipedal locomotion, and the body, especially the lower extremity, generally changes with age

  • The purpose of this study was to clarify the impact of sex and body constitution on 3D lower extremity alignment in WB positions for healthy, elderly, non-obese humans in a Japanese population, based on the hypothesis that body constitution and sex would provide the different influence on lower extremity alignment in each plane, respectively

  • In the correlation analysis between alignment and body constitution (Table 2), body constitution was significantly correlated with each alignment in total subjects

Read more

Summary

Introduction

Humans support their bodies exclusively by vertical balance in bipedal locomotion, and the body, especially the lower extremity, generally changes with age. This study sought to clarify this association in healthy, elderly, non-obese humans in a Japanese population. Humans support their bodies exclusively by vertical balance in bipedal locomotion (Dubousset, 1994, Skoyles, 2006). The bearing load and forced human vertical balance under gravity produce age-related changes in the spine, pelvis, and lower extremity, leading to a compensatory mechanism and further providing a negative cycle (Dubousset, 1994, Skoyles, 2006, Hasegawa et al, 2016, Ferrero et al, 2016, Jalai et al, 2017). The bearing load can be represented by weight, and the balance-retaining ability by the difference in the center of gravity can be described by body height (Skoyles, 2006).

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call