Abstract
Genetically identical cells contain variable numbers of molecules, even if the cells share the same environment. This stochastic variability is prominent when molecules have low abundance, which is the case for mRNA noise. Most studies focused on how transcription affects mRNA noise, and little is known about the role of RNA degradation. To discriminate the fluctuations in these processes during the decay of a pair of reporter mRNAs, we quantified the uncorrelated intrinsic and the correlated extrinsic noise using single-molecule RNA FISH. Intrinsic noise converges to the Poisson level during the decay. mRNAs that have a short half-life are more susceptible to extrinsic noise than stable mRNAs. However, the Xrn1 exonuclease and the NMD pathways, which degrade mRNAs rapidly, were found to have lower fluctuation, which mitigates the noise of the short-lived mRNAs. This permits low variability across the entire range of mRNA half-lives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.