Abstract
Living cells reorganize their gene expression through regulatory machineries in response to external perturbations. The contribution of the regulation to the noise in gene expression is of great interest. In this study, we evaluate the contribution of both native and foreign regulations to the extrinsic noise in gene expression. We analyzed the gene expression data of a mini-library containing 70 genetic constructs of 136 clones into which the gfp gene had been chromosomally incorporated under the control of either native or foreign regulation. We found that the substitution of native by foreign regulation, i.e., the insertion of the Ptet promoter, triggered a decrease in the extrinsic noise, which was independent of the protein abundance. The reanalyses of varied genomic data sets verified that the noisy gene expression mediated by native regulations is a common feature, regardless of the diversity in the genetic approaches used. Disturbing native regulations by a synthetic promoter reduced the extrinsic noise in gene expression in Escherichia coli. It indicated that the extrinsic noise in gene expression caused by the native regulation could be further repressed. These results suggest a tendency of released regulation leading to reduced noise and a linkage between noise and plasticity in the regulation of gene expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.