Abstract

The molecular basis of the optical properties of chromophoric dissolved organic matter (CDOM) and humic substances (HS) remains poorly understood and yet to be investigated adequately. This study evaluates the relative contributions of two broad classes of carbonyl-containing compounds, ketones/aldehydes versus quinones, to the absorption and emission properties of a representative suite of HS as well as a lignin sample. Selective reduction of quinones to hydroquinones by addition of small molar excesses of dithionite to these samples under anoxic conditions produced small or negligible changes in their optical properties; however, when measurable, these changes were largely reversible upon exposure to air, consistent with the reoxidation of hydroquinones to quinones. With one exception, estimates of quinone content based on dithionite consumption by the HS under anoxic conditions were in good agreement with past electrochemical measurements. In contrast, reduction of ketones/aldehydes to alcohols employing excess sodium borohydride produced pronounced and largely, but not completely, irreversible changes in the optical properties. The results demonstrate that (aromatic) ketones/aldehydes, as opposed to quinones, play a far more prominent role in the optical absorption and emission properties of these HS, consistent with these moieties acting as the primary acceptors in charge-transfer transitions within these samples. As a method, anoxic dithionite titrations may further allow additional insight into the content and impact of quinones/hydroquinones on the optical properties of HS and CDOM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.