Abstract

The difference in the amounts of NR2 subunits contained in NMDA receptors of the hippocampus has been related to their different involvement in activity-dependent synaptic plasticity. Here, we show that Ro 25-6981, a high-affinity and selective blocker of NMDA receptors containing NR2B subunits, is able to block the acquisition of a trace conditioning paradigm in adult rats, a task that requires the active participation of hippocampal circuits. Reconditioning with the same trace paradigm was also prevented by Ro 25-6981. In addition, we show that the slope of monosynaptic field excitatory postsynaptic potentials evoked at the dentate gyrus by single pulses presented to the medial perforant pathway increases significantly across conditioning sessions and during reconditioning, in a linear relationship with the increase in the number of classically conditioned eyelid responses. Administration of Ro 25-6981 prevented these learning-related changes in synaptic strength at the perforant pathway-dentate granule cell synapse. The present results suggest the involvement of NR2B-containing NMDA receptors in hippocampal functions related to both associative learning and activity-dependent synaptic plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.