Abstract
AbstractThe effect of polyethylene glycol–induced osmotic stress on the activity of nitrate reductase, glutamine synthetase, and glycolate oxidase in leaves of young barley plants grown under two nutrient‐supply regimes was studied. The activity of nitrate reductase gradually decreased after polyethylene glycol (PEG) application, while glutamine synthetase and glycolate oxidase were increased. It is speculated that the enhanced glutamine synthetase and glycolate oxidase activities are due to increased flux of metabolites through the photorespiratory cycle. Prominent increase in concentrations of free proline, reducing sugars, and free amino acids was observed. The possible contribution of these cellular solutes to the process of osmotic adjustment and the role of mineral supply is discussed. It is suggested that low N supply in combination with stress conditions switched the preferred osmolyte type from amino acids (N‐containing) to sugars (C‐containing).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have