Abstract

BackgroundSilver-Russell syndrome (SRS) is characterized by growth failure and dysmorphic features. Major (epi)genetic causes of SRS are loss of methylation on chromosome 11p15 (11p15 LOM) and maternal uniparental disomy of chromosome 7 (upd(7)mat). However, IGF2, CDKN1C, HMGA2, and PLAG1 mutations infrequently cause SRS. In addition, other imprinting disturbances, pathogenic copy number variations (PCNVs), and monogenic disorders sometimes lead to SRS phenotype. This study aimed to clarify the frequency and clinical features of the patients with gene mutations among etiology-unknown patients with SRS phenotype.ResultsMultigene sequencing was performed in 92 out of 336 patients referred to us for genetic testing for SRS. The clinical features of the patients were evaluated based on the Netchine-Harbison clinical scoring system. None of the patients showed 11p15 LOM, upd(7)mat, abnormal methylation levels for six differentially methylated regions (DMRs), namely, PLAGL1:alt-TSS-DMR on chromosome 6, KCNQ1OT1:TSS-DMR on chromosome 11, MEG3/DLK1:IG-DMR on chromosome 14, MEG3:TSS-DMR on chromosome 14, SNURF:TSS-DMR on chromosome 15, and GNAS A/B:TSS-DMR on chromosome 20, PCNVs, or maternal uniparental disomy of chromosome 16. Using next-generation sequencing and Sanger sequencing, we screened four SRS-causative genes and 406 genes related to growth failure and/or skeletal dysplasia. We identified four pathogenic or likely pathogenic variants in responsible genes for SRS (4.3%: IGF2 in two patients, CDKN1C, and PLAG1), and five pathogenic variants in causative genes for known genetic syndromes presenting with growth failure (5.4%: IGF1R abnormality (IGF1R), SHORT syndrome (PIK3R1), Floating-Harbor syndrome (SRCAP), Pitt-Hopkins syndrome (TCF4), and Noonan syndrome (PTPN11)). Functional analysis indicated the pathogenicity of the CDKN1C variant. The variants we detected in CDKN1C and PLAG1 were the second and third variants leading to SRS, respectively. Our patients with CDKN1C and PLAG1 variants showed similar phenotypes to previously reported patients. Furthermore, our data confirmed IGF1R abnormality, SHORT syndrome, and Floating-Harbor syndrome are differential diagnoses of SRS because of the shared phenotypes among these syndromes and SRS. On the other hand, the patients with pathogenic variants in causative genes for Pitt-Hopkins syndrome and Noonan syndrome were atypical of these syndromes and showed partial clinical features of SRS.ConclusionsWe identified nine patients (9.8%) with pathogenic or likely pathogenic variants out of 92 etiology-unknown patients with SRS phenotype. This study expands the molecular spectrum of SRS phenotype.

Highlights

  • Silver-Russell syndrome (SRS) is characterized by growth failure and dysmorphic features

  • The clinical features of the patients were evaluated based on the Netchine-Harbison clinical scoring system

  • We identified four pathogenic or likely pathogenic variants in responsible genes for SRS (4.3%: IGF2 in two patients, CDKN1C, and PLAG1), and five pathogenic variants in causative genes for known genetic syndromes presenting with growth failure (5.4%: IGF1R abnormality (IGF1R), SHORT syndrome (PIK3R1), FloatingHarbor syndrome (SRCAP), Pitt-Hopkins syndrome (TCF4), and Noonan syndrome (PTPN11))

Read more

Summary

Introduction

Silver-Russell syndrome (SRS) is characterized by growth failure and dysmorphic features. This study aimed to clarify the frequency and clinical features of the patients with gene mutations among etiology-unknown patients with SRS phenotype. Silver-Russell syndrome (SRS) is a clinically and genetically heterogeneous disorder characterized by growth failure and dysmorphic features [1]. The patients with four or more NH-CSS criteria have a diagnosis of SRS [1]. Among these patients, patients satisfying NH-CSS criteria including both relative macrocephaly and protruding forehead, but with normal molecular testing, are classified as “clinical SRS” [1]. Many patients with SRS show clinical features such as triangular face, fifth finger clinodactyly, and/or brachydactyly [2]. Patients meeting only three NH-CSS criteria, but who have clinically suspected SRS were recommended to receive genetic testing for SRS as well as patients with four or more NH-CSS criteria [1]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call