Abstract

BackgroundThe heart rate progressively increases throughout pregnancy, reaching a maximum in the third trimester. This elevated heart rate is also present in pregnant mice and is associated with accelerated automaticity, higher density of the pacemaker current If and changes in Ca2+ homeostasis in sinoatrial node (SAN) cells. Strong evidence has also been provided showing that 17β-estradiol (E2) and estrogen receptor α (ERα) regulate heart rate. Accordingly, we sought to determine whether E2 levels found in late pregnancy cause the increased cardiac automaticity associated with pregnancy. Methods and resultsVoltage- and current-clamp experiments were carried out on SAN cells isolated from female mice lacking estrogen receptor alpha (ERKOα) or beta (ERKOβ) receiving chronic E2 treatment mimicking late pregnancy concentrations. E2 treatment significantly increased the action potential rate (284 ± 24 bpm, +E2 354 ± 23 bpm, p = 0.040) and the density of If (+52%) in SAN cells from ERKOβ mice. However, If density remains unchanged in SAN cells from E2-treated ERKOα mice. Additionally, E2 also increased If density (+67%) in nodal-like human-induced pluripotent stem cell-derived cardiomyocytes (N-hiPSC-CM), recapitulating in a human SAN cell model the effect produced in mice. However, the L-type calcium current (ICaL) and Ca2+ transients, examined using N-hiPSC-CM and SAN cells respectively, were not affected by E2, indicating that other mechanisms contribute to changes observed in these parameters during pregnancy. ConclusionThe accelerated SAN automaticity observed in E2-treated ERKOβ mice is explained by an increased If density mediated by ERα, demonstrating that E2 plays a major role in regulating SAN function during pregnancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.