Abstract

Nitric oxide (NO) donors have been shown to activate or inhibit constitutively-activated survival/anti-apoptotic pathways, such as NF-κB, in cancer cells. We report here that treatment of drug-resistant human prostate carcinoma cell lines with high levels (500–1000μM) of the NO-donor DETANONOate sensitized the resistant tumor cells to apoptosis by CDDP and the combination was synergistic. We hypothesized that DETANONOate inhibits previously identified NF-κB-regulated resistant factors such as Yin Yang 1 (YY1) and Bcl-2/BclXL. Lysates from tumor cells treated with DETANONOate showed inhibition of YY1 and BclXL expressions. Transfection with either YY1 or BclXL siRNA resulted in the inhibition of both YY1 and BclXL expressions and sensitized the cells to CDDP apoptosis. Mice bearing PC-3 tumor xenografts and treated with the combination of DETANONOate and CDDP resulted in significant inhibition of tumor growth; treatment with single agent alone did not have any effect on tumor growth. Analysis of patients TMA tissues with prostatic cancer revealed higher expression of both YY1 and BclXL as a function of tumor grades and their levels were directly correlated. Thus, both YY1 and BclXL are potential prognostic biomarkers. Overall, the above findings suggest that one mechanism of DETANONOate-induced sensitization of resistant tumor cells to CDDP correlated with the inhibition of NF-κB and its targets YY1 and BclXL. The examination of the combination of NO donors and cytotoxic therapy in the treatment of resistant prostate cancer may be warranted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.