Abstract

Dimers of CH3 domains from human IgG1 were used to study the effect of mutations constructed at a domain-domain interface upon domain dissociation and unfolding, "complex stability". Alanine replacement mutants were constructed on one side of the interface for each of the sixteen interdomain contact residues by using a single-chain CH3 dimer in which the carboxyl terminus of one domain was joined to the amino terminus of the second domain via a (G4S)4 linker. Single-chain variants were expressed in Escherichia coli grown in a fermentor and recovered in yields of 6-90 mg L-1 by immobilized metal affinity chromatography. Guanidine hydrochloride-induced denaturation was used to follow domain dissociation and unfolding. Surprisingly, the linker did not perturb the complex stability for either the wild type or two destabilizing mutants. The CH3 domain dissociation and unfolding energetics are dominated by six contact residues where corresponding alanine mutations each destabilize the complex by >2.0 kcal mol-1. Five of these residues (T366, L368, F405, Y407, and K409) form a patch at the center of the interface and are located on the two internal antiparallel beta-strands. These energetically key residues are surrounded by 10 residues on the two external beta-strands whose contribution to complex stability is small (three have a Delta DeltaG of 1.1-1.3 kcal mol-1) or very small (seven have a Delta DeltaG of </=0.7 kcal mol-1). Thus, at the center of the CH3 structural interface there is a small "functional interface" of residues that make significant contributions to complex stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.