Abstract
We examined whether capsaicin-sensitive sensory neurons might be involved in the increase in the gastric tissue level of prostaglandins, thereby contributing to the reduction of water immersion restraint stress (WIR)-induced gastric mucosal injury in rats. Gastric tissue levels of calcitonin gene-related peptide (CGRP), 6-keto-PGF1alpha, and PGE2 were transiently increased 30 min after WIR. These increases were significantly inhibited by subcutaneous injection of capsazepine (CPZ), a vanilloid receptor antagonist, and by functional denervation of capsaicin-sensitive sensory neurons induced by the administration of high-dose capsaicin. The administration of capsaicin (orally) and CGRP (intravenously) significantly enhanced the WIR-induced increases in the gastric tissue level of prostaglandins 30 min after WIR, whereas CGRP-(8-37), a CGRP receptor antagonist, significantly inhibited them. Pretreatment with Nomega-nitro-L-arginine methyl ester (L-NAME), a nonselective inhibitor of nitric oxide (NO) synthase (NOS), and that with indomethacin inhibited the WIR-induced increases in gastric tissue levels of prostaglandins, whereas either pretreatment with aminoguanidine (AG), a selective inhibitor of the inducible form of NOS, or that with NS-398, a selective inhibitor of cyclooxygenase (COX)-2, did not affect them. CPZ, the functional denervation of capsaicin-sensitive sensory neurons, and CGRP-(8-37) significantly increased gastric MPO activity and exacerbated the WIR-induced gastric mucosal injury in rats subjected to 4-h WIR. The administration of capsaicin and CGRP significantly increased the gastric tissue levels of prostaglandins and inhibited both the WIR-induced increases in gastric MPO activity and gastric mucosal injury 8 h after WIR. These effects induced by capsaicin and CGRP were inhibited by pretreatment with L-NAME and indomethacin but not by pretreatment with AG and NS-398. These observations strongly suggest that capsaicin-sensitive sensory neurons might release CGRP, thereby increasing the gastric tissue levels of PGI2 and PGE2 by activating COX-1 through activation of the constitutive form of NOS in rats subjected to WIR. Such activation of capsaicin-sensitive sensory neurons might contribute to the reduction of WIR-induced gastric mucosal injury mainly by inhibiting neutrophil activation.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of physiology. Gastrointestinal and liver physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.