Abstract

We investigated the relative contributions of temperature and a 300 kHz alternating magnetic field (AMF) on magnetic hyperthermia treatment (MHT). Our system consisted of an induction coil, which generated AMF by electric current flow, and a newly developed, temperature-controlled circulating water-jacketed glass bottle placed inside the coil. The AMF generator operated at a frequency of 300 kHz with variable field strength ranging from 0 to 11 mT. Four treatment conditions were employed: (A) control (37 °C, 0 mT), (B) AMF exposure (37 °C, 11 mT), (C) hyperthermia (46 °C, 0 mT), and (D) hyperthermia plus AMF exposure (46 °C, 11 mT) for 30 min. Cell viability and apoptotic death rate were estimated. The relative contributions or interactions of hyperthermia (46 °C) and AMF (11 mT) on MHT were evaluated using 2 × 2 factorial experiment analysis. Group A was statistically different (P < 0.05) from each of the other treatments. The observed effects on both cell viability and apoptotic cell death were influenced by temperature (97.36% and 92.15%, respectively), AMF (1.78% and 4.99%, respectively), and the interactions between temperature and AMF (0.25% and 2.36%, respectively). Thus, the effect of hyperthermia was significant. Also, AMF exposure itself might play a role in MHT, although these observations were made in vitro. These findings suggest a possible presence of an AMF effect during clinical magnetic hyperthermia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call