Abstract

Background: Patients with spinal cord injuries (SCIs) are at a greater risk for the development of cardiovascular diseases (CVDs) than able-bodied individuals due to high risks of endothelial dysfunction. Summary: For instance, patients with SCIs lose autonomic control of the heart and vasculature, which results in severe fluctuations in blood pressure. These oscillations between hypotension and hypertension have been shown to damage blood vessel endothelial cells and may contribute to the development of atherosclerosis. Furthermore, the loss of skeletal muscle control results in skeletal muscle atrophy and inward remodeling of the conduit arteries. It has been shown that blood vessels in the legs are chronically exposed to high shear, while the aorta experiences chronically low shear. These alterations to shear forces may adversely impact endothelial vasodilatory capacity and promote inflammatory signaling and leukocyte adherence. Additionally, microvascular endothelial vasodilatory capacity is impaired in patients with an SCI, and this may precede changes in conduit artery endothelial function. Finally, due to immobility and a loss of skeletal muscle mass, patients with SCIs have a higher risk of metabolic disorders, inflammation, and oxidative stress. Key Messages: Collectively, these factors may impair endothelium-dependent vasodilatory capacity, promote leukocyte adhesion and infiltration, promote the peroxidation of lipids, and ultimately support the development of atherosclerosis. Therefore, future interventions to prevent CVDs in patients with SCIs should focus on the management of endothelial health to prevent endothelial dysfunction and atherosclerosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call