Abstract
The transient stability assessment based on machine learning faces challenges such as sample data imbalance and poor generalization. To address these problems, this paper proposes an intelligent enhancement method for real-time adaptive assessment of transient stability. In the offline phase, a convolutional neural network (CNN) is used as the base classifier. A model training method based on contrastive learning is introduced, aiming to increase the spatial distance between positive and negative samples in the mapping space. This approach effectively improves the accuracy of the model in recognizing unbalanced samples. In the online phase, when real data with different distribution characteristics from the offline data are encountered, an active transfer strategy is employed to update the model. New system samples are obtained through instance transfer from the original system, and an active sampling strategy considering uncertainty is designed to continuously select high-value samples from the new system for labeling. The model parameters are then updated by fine-tuning. This approach drastically reduces the cost of updating while improving the model's adaptability. Experiments on the IEEE39-node system verify the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.