Abstract
Thermal tolerance is a critical factor influencing the survival of living organisms. This study focuses on the thermal resistance of copepod species, Thermocyclops crassus (Fischer, 1853) and T. oithonoides (Sars G.O., 1863), with overlapping distribution ranges in Europe. Short-term heat shock experiments were conducted to assess the thermal resistance of these copepods, considering various temperature increments and exposure durations. Additionally, the study explored the influence of heat shock on egg sac shedding, a vital indicator of population dynamics. Results indicate that widely distributed T. crassus exhibits higher thermal tolerance compared to narrowly distributed T. oithonoides, with survival rates varying under different heat shock conditions. Furthermore, T. crassus demonstrated a quicker response in dropping egg sacs in response to thermal stress, suggesting a potential adaptive mechanism for the survival of adults. However, rapid egg sac droppings pose high risks for eggs facing unfavorable conditions. T. crassus, inhabiting environments with greater temperature fluctuations such as the littoral and pelagial zones, exhibited better survival mechanisms compared to T. oithonoides, which predominantly resides in the pelagic zone. The findings have implications for understanding copepod responses to global warming and thermal pollution. This research contributes insights into the adaptive strategies of thermophilic copepod species and their ecological consequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.