Abstract
Fertilization could influence ecosystem structure and functioning through species turnover (ST) and intraspecific trait variation (ITV), especially in nutrient limited ecosystems. To quantify the relative importance of ITV and ST in driving community functional structure and productivity changes under nitrogen (N) and phosphorous (P) addition in semiarid grasslands. In this regard, we conducted a four-year fertilizer addition experiment in a semiarid grassland on the Loess Plateau, China. We examined how fertilization affects species-level leaf and root trait plasticity to evaluate the ability of plants to manifest different levels of traits in response to different N and P addition. Also, we assessed how ITV or ST dominated community-weighted mean (CWM) traits and functional diversity variations and evaluated their effects on grassland productivity. The results showed that the patterns of plasticity varied greatly among different plant species, and leaf and root traits showed coordinated variations following fertilization. Increasing the level of N and P increased CWM_specific leaf area (CWM_SLA), CWM_leaf N concentration (CWM_LN) and CWM_maximum plant height (CWM_Hmax) and ITV predominate these CWM traits variations. As a results, increased CWM_Hmax, CWM_LN and CWM_SLA positively influenced grassland productivity. In contrast, functional divergence decreased with increasing N and P and showed negative relationships with grassland productivity. Our results emphasized that CWM traits and functional diversity contrastingly drive changes in grassland productivity under N and P addition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.