Abstract

Although enhancing the knowledge of nitrogen (N) dynamics in aquatic systems is crucial for basin N management, there is still a lack of theories on the patterns of basin N sources and transport because of the intricate influence of human activities, climatic conditions, landscape patterns, and topography on the trajectory of basin N. To shed new light on the patterns of basin N sources and transport in the Chinese subtropical monsoon region, this study provides a comprehensive approach combining multiple isotopes and hydrological model based on monthly records of hydro-chemistry and isotopes (18O-NO3− /15N-NO-3 and 18O-H2O /2H-H2O) for river water, groundwater and rainfall in three basins over multiple years. Our observations of hydro-chemistry showed that fluvial N levels in highly urbanized basins (3.05 ± 1.42 mg·L−1) were the highest and were characterized by higher levels in the dry season. In the agricultural basin, fluvial N levels in February and March were approximately 1.9 times higher than those in the other months. The fluvial N load was higher in agricultural basins (0.624–0.728 T N km -2 y -1) than in urban basins (0.558 T N km -2 y -1), primarily because of variations in sewage treatment rates and fertilizer application. In highly urbanized basin, manure and sewage (46.9 %) were the dominant sources of fluvial N, which were discharged into rivers after treatment. In the plain agricultural basin, a substantial portion of diffused residential sewage leaches into aquifers and is stored. In the hilly agro-forest mixed basin, the high baseflow coefficient (75.8 %) and the key role of groundwater N, mainly from soil N (27.3 %), chemical fertilizers (20.2 %), manure and sewage (46.6 %), to fluvial N (26.5 %) indicated that a high proportion of the N sources leached into the aquifer and were then transported to rivers. For the first time, this study integrated multiple methods to substantiate the proposed typical patterns of N sources and transport within the basins. These findings have significant implications for tailored basin-specific N management strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.