Abstract

Lake ice phenology is regarded as a good proxy for the past and present climates. Long time series passive microwave radiometry data are used to estimate lake ice phenology variations in the Qinghai–Tibet Plateau (QTP), and a contrasting pattern of phenology change trend is found that the time series trend of lake ice freeze-up or break-up time is obviously reversed for lakes in the QTP. The reason for this contrasting trend of lake ice phenology is discussed based on factors such as salinity, water volume change, and air temperature change. Lake ice phenology data are separated based on lake salinity for the climate study: lake ice phenology of lakes with low salinity can be used as air temperature and climate change indicator, whereas lake ice phenology of lakes with high salinity and a low water volume can be used as an indicator of water volume variation under climate change. Correlation analysis of air temperature and the lake ice phenology show that air temperature is the main driving factor behind lake ice phenology variations. The lake ice phenology results suggest overall rising air temperatures during the period 1987–2017 in all regions of the QTP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.