Abstract

The lateritic bauxite deposits in the Mempawah area, West Kalimantan, were formed by the chemical weathering of Cretaceous granodioritic and andesitic rocks. They occurred locally on the low hills surrounded by swampy areas. Detailed surface geological mapping, test pits, mineralogical and geochemical analyses were performed to determine the characteristics and genesis of bauxite from different parent rocks. From bottom upward, the deposits are composed of fresh parent rocks, clay or pallid zone, bauxite zone with a few sparse ferricrete at the top of the bauxite zone, and soil. Bauxite derived from granodiorite exhibits brownish-red, massive, boulder to gravel-sized concretion in clay matrix and is composed of predominant gibbsite with subordinate kaolinite, quartz, goethite, and a minor amount of magnetite and hematite. In contrast, bauxite derived from andesitic rocks exhibits reddish-brown and is composed of predominant goethite. During the leaching process, SiO2 as a mobile compound decreased significantly in neutral pH, while Al2O3 and Fe2O3 precipitated as residual materials to form bauxite concretion. The enrichment anomaly of bauxite derived from andesitic rocks is caused by physio-chemical changes from hydrothermal alteration. Bauxite was formed by indirect bauxitization through the leaching of primary minerals under a tropical-humid climate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.