Abstract

Increased atmospheric nitrogen deposition generally increases plant biomass production until reaching soil N saturation, which could increase the uncertainty of changes in ecosystem temporal stability and their mechanisms. Yet, the response of ecosystem stability to N enrichment and their underlying mechanisms are uncertain, especially when N saturation reached. Here, we conducted a multi-level N addition (0, 2, 5, 10, 15, 25, and 50 g N m−2 year−1; high added rates reached N saturation) experiment from 2018 to 2022 to estimate the effect of simulated N deposition on ecosystem biomass stability in a subalpine grassland located on the Qilian mountain of north-eastern Tibetan Plateau. Our results show that community biomass production increased with an increase in N addition in the first N addition experiment year, but decreased with increase in N addition rates after N saturation in subsequent years. We first find a negative quadratic relationship between biomass temporal stability and added N rate, whereby above N saturation threshold (5 g N m−2 year−1 at this site), increases in N addition reduces biomass temporal stability. The changes in biomass temporal stability are largely determined by dominant species stability, species asynchronous, and species richness. These results provide a better understanding of N-induced effect on ecosystem stability and their underlying mechanisms, which is important to evaluate functioning and services of ecological systems under global change scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call