Abstract

The purpose of this research was to examine the influence of hydrothermally treated coal gangue (HTCG) with and without biochar (BC) on the leaching, bioavailability, and redistribution of chemical fractions of heavy metals (HMs) in copper mine tailing (Cu-MT). An increase in pH, water holding capacity (WHC) and soil organic carbon (SOC) were observed due to the addition of BC in combination with raw coal gangue (RCG) and HTCG. A high Cu and other HMs concentration in pore water (PW) and amended Cu-MT were reduced by the combination of BC with RCG and/or HTCG, whereas individual application of RCG slightly increased the Cu, Cd, and Zn leaching and bioavailability, compared to the unamended Cu-MT. Sequential extractions results showed a reduction in the exchangeable fraction of Cu, Cd, Pb, and Zn and elevation in the residual fraction following the addition of BC-2% and BC-HTCG. However, individual application of RCG slightly increased the Cu, Cd, and Zn exchangeable fractions assessed by chemical extraction method. Rapeseed was grown for the following 45 days during which physiological parameters, metal uptake transfer rate (TR), bioconcentration factor (BCF), and translocation factor (TF) were measured after harvesting. In the case of plant biomass, no significant difference between applied amendments was observed for the fresh biomass (FBM) and dry biomass (DBM) of shoots and roots of rapeseed. However, BC-2% and BC-HTCG presented the lowest HMs uptake, TR, BCF (BCFroot and BCFshoot), and TF for Cu, Cd, Cr, Ni, Pb, and Zn in rapeseed among the other amendments compared to the unamended Cu-MT. Overall, these findings are indicative that using biochar in combination with RCG and/or HTCG led to a larger reduction in HMs leaching and bioavailability, due to their higher sorption capacity and could be a suitable remediation strategy for heavy metals in a Cu-MT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.