Abstract

ABSTRACTFour gramineous energy plants, Miscanthus sacchariflorus, M. floridulus, Phragmites australis, and Arundo donax were grown on copper tailings in the field for four years. Their phytoremediation potential was examined in terms of their effects on the fractions of heavy metals and soil enzyme activities. Results showed that plantation of these four gramineous plants has improved the proportion of organic material (OM)-binding fraction of heavy metals in copper tailings as a whole, and reduced the proportion of exchangeable and residual fractions. In particular, M. sacchariflorus growth improved significantly the proportion of the OM-binding fractions of Cu (1.73 times), Cd (1.71 times), Zn (1.18 times), and Pb (3.14 times) (P < 0.05) and reduced markedly the residual fractions of Cu (64.45%), Cd (82.38%), Zn (61.43%), and Pb (73.41%) (P < 0.05). Except for A. donax, the growth of other three energy plants improved the activity of phosphatase, urease and dehydrogenase in copper tailings to some extent. In particular, the activity of soil phosphatase and urease in planted tailings differed significantly from that of control (P < 0.05). The effect of M. sacchariflorus growth on soil enzyme was the highest, followed by P. australis, M. floridulus, and A. donax. The content of each heavy metal fraction in soil was correlated with soil enzyme activities, especially the content of OM-binding fraction, which correlated significantly with the activities of phosphatase, urease and dehydrogenase in soil. According to the effects of four gramineous plants growth on activity of soil enzymes and fractions of heavy metals, M. sacchariflorus had the optimal effects for phytoremediation. Therefore, M. sacchariflorus was a candidate plant with great potential for the revegetation of heavy metal tailings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.