Abstract

BackgroundsPrevious studies have shown that diffusion-weighted cardiovascular magnetic resonance (DW-CMR) is highly sensitive to replacement fibrosis of chronic myocardial infarction. Despite this sensitivity to myocardial infarction, DW-CMR has not been established as a method to detect diffuse myocardial fibrosis. We propose the application of a recently developed DW-CMR technique to detect diffuse myocardial fibrosis in hypertrophic cardiomyopathy (HCM) patients and compare its performance with established CMR techniques.MethodsHCM patients (N = 23) were recruited and scanned with the following protocol: standard morphological localizers, DW-CMR, extracellular volume (ECV) CMR, and late gadolinium enhanced (LGE) imaging for reference. Apparent diffusion coefficient (ADC) and ECV maps were segmented into 6 American Heart Association (AHA) segments. Positive regions for myocardial fibrosis were defined as: ADC > 2.0 μm2/ms and ECV > 30 %. Fibrotic and non-fibrotic mean ADC and ECV values were compared as well as ADC-derived and ECV-derived fibrosis burden. In addition, fibrosis regional detection was compared between ADC and ECV calculating sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) using ECV as the gold-standard reference.ResultsADC (2.4 ± 0.2 μm2/ms) of fibrotic regions (ADC > 2.0 μm2/ms) was significantly (p < 0.01) higher than ADC (1.5 ± 0.2 μm2/ms) of non-fibrotic regions. Similarly, ECV (35 ± 4 %) of fibrotic regions (ECV > 30 %) was significantly (p < 0.01) higher than ECV (26 ± 2 %) of non-fibrotic regions. In fibrotic regions defined by ECV, ADC (2.2 ± 0.3 μm2/ms) was again significantly (p < 0.05) higher than ADC (1.6 ± 0.3 μm2/ms) of non-fibrotic regions. In fibrotic regions defined by ADC criterion, ECV (34 ± 5 %) was significantly (p < 0.01) higher than ECV (28 ± 3 %) in non-fibrotic regions. ADC-derived and ECV-derived fibrosis burdens were in substantial agreement (intra-class correlation = 0.83). Regional detection between ADC and ECV of diffuse fibrosis yielded substantial agreement (κ = 0.66) with high sensitivity, specificity, PPV, NPV, and accuracy (0.80, 0.85, 0.81, 0.85, and 0.83, respectively).ConclusionDW-CMR is sensitive to diffuse myocardial fibrosis and is capable of characterizing the extent of fibrosis in HCM patients.

Highlights

  • Current cardiovascular magnetic resonance (CMR) methods to characterize diffuse myocardial fibrosis include late gadolinium enhanced imaging (LGE) [3, 4], post contrast T1 mapping [5,6,7], and extracellular volume (ECV) mapping [7,8,9]. The latter two techniques provide quantitative measures (T1 and ECV values) that can further characterize the degree of fibrosis

  • A final trace apparent diffusion coefficient fibrosis accounted for about 50 % (33/60) of the total (ADC) map was calculated (ADC = [ADCx + ADCy + ADCz] / 3)

  • ECV maps were calculated online using pre/ post T1 maps derived from a standard motion-corrected number of positive fibrosis segments found on ECV

Read more

Summary

Methods

Fibrotic and non-fibrotic mean ADC and ECV values were compared as well as ADC-derived and ECV-derived fibrosis burden. Fibrosis regional detection was compared between ADC and ECV calculating sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) using ECV as the gold-standard reference. In fibrotic regions defined by ECV, ADC (2.2 ± 0.3 μm2/ms) was again significantly (p < 0.05) higher than ADC (1.6 ± 0.3 μm2/ms) of non-fibrotic regions. In fibrotic regions defined by ADC criterion, ECV (34 ± 5 %) was significantly (p < 0.01) higher than ECV (28 ± 3 %) in non-fibrotic regions. Regional detection between ADC and ECV of diffuse fibrosis yielded substantial agreement (κ = 0.66) with high sensitivity, specificity, PPV, NPV, and accuracy (0.80, 0.85, 0.81, 0.85, and 0.83, respectively).

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call