Abstract

Exploring the complex relationship between population change and surface urban heat island (SUHI) effect has important practical significance for the ecological transformation development of shrinking cities in the context of the prevalence of urban shrinkage and the global climate change. This paper compares the population change and SUHI effect between population shrinking region (Northeast Region, NR) and population growing region (Yangtze River Delta, YRD) in China, and explores their differences in driving mechanisms, using GIS spatial analysis and Geodetector model. Our results indicated that there are significant differences in population changes and SUHI intensity between these two regions. About 72.22% of the cities in the NR were shrinking, while their SUHI intensities increased by an average of 1.69°C. On the contrary, the urban population in the YRD shows a linear growth trend, while their SUHI intensities decreased by 0.11°C on average. The results of bivariate Moran's I index also indicated that the spatial correlation between the urban population changes and the SUHI intensity changes are not significant in the above regions. Furthermore, there are significant differences in the primary drivers of SUHI variations between these two regions. In the NR, underlying surface changes, including the changes of green coverage and built-up areas, are the most important driving factors. However, atmospheric environment changes, such as carbon dioxide emission and sulfur dioxide emission, are the key drivers in the YRD. Northam's theory of three-stage urbanization and environmental Kuznets curve hypothesis are powerful to explain these differences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.