Abstract

We give evidence that a population of pure contrarian globally coupled D-dimensional Kuramoto oscillators reaches a collective synchronous state when the interplay between the units goes beyond the limit of pairwise interactions. Namely, we will show that the presence of higher-order interactions may induce the appearance of a coherent state even when the oscillators are coupled negatively to the mean field. An exact solution for the description of the microscopic dynamics for forward and backward transitions is provided, which entails imperfect symmetry breaking of the population into a frequency-locked state featuring two clusters of different instantaneous phases. Our results contribute to a better understanding of the powerful potential of group interactions entailing multidimensional choices and novel dynamical states in many circumstances, such as in social systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.