Abstract
The main technical result of this paper is to characterize the contracting isometries of a CAT(0) cube complex without any assumption on its local finiteness. Afterwards, we introduce the combinatorial boundary of a CAT(0) cube complex, and we show that contracting isometries are strongly related to isolated points at infinity, when the complex is locally finite. This boundary turns out to appear naturally in the context of Guba and Sapir's diagram groups, and we apply our main criterion to determine precisely when an element of a diagram group induces a contracting isometry on the associated Farley cube complex. As a consequence, in some specific case, we are able to deduce a criterion to determine precisely when a diagram group is acylindrically hyperbolic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.