Abstract

Catch bonds are cellular receptor-ligand pairs whose lifetime, counterintuitively, increases with increasing load. Although their existence was initially pure theoretical speculation, recent years have seen several experimental demonstrations of catch-bond behavior in biologically relevant and functional protein-protein bonds. Particularly notable among these established catch-bond formers is the integrin α5β1, the primary receptor for fibronectin and, as such, a crucial determinant for the characteristics of the mechanical coupling between cell and matrix. In this work, we explore the implications of single catch-bond characteristics for the behavior of a load-sharing cluster of such bonds: These clusters are shown to possess a regime of strengthening with increasing applied force, similar to the manner in which focal adhesions become selectively reinforced. Our results may shed new light on the fundamental processes that allow cells to sense and respond to the mechanical properties of their environment and in particular show how single focal adhesions may act, autonomously, as local rigidity sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.